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3. Orographic Precipitation – Central Andes
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Figure 1: DEM of the Southern Appalachian Mountains (SAM) with 

locations of Ground Validation (GV) parsivel disdrometers. Ridges has 

DEM > 850 m.  

Comparison of GPM Ku-PR estimates with long-term GV rain 

gauge suggests:

1. Robust temporal pattern of detection errors.

2. Underestimations when the GV rain-rate > 7 mm/h. 

Physical Basis of Errors in QPE at Mountain Regions:

1. Contamination of near-surface reflectivities by ground-clutter (GC):

2. Error in DSD parameters – especially for Seeder-Feeder Interaction (SFI) cases

Warm Precipitation Case Study: 

Figure 2: (a) Histogram of 

AGL height affected by 

ground-clutter (b) A swath of 

GPM Ku-PR measured 

reflectivity profiles showing 

the effect of ground-clutter. 

For off-nadir cases , GC 

affects until 2.5 km AGL –

leading to 

underestimation of low-

level enhanced rainfall. 
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Figure 3: SFI observed on

October 1, 2015 between

15:00 and 15:30 at

Elkmont (P6 in Fig. 1).

Duke Rain Microphysics

Column Model was used to

simulate this case using

collocated MRR and MPS

observations. (a) Dm-Nw

relationship for with and

without fog simulations

over histogram of Parsivel

observations and GPM Ku-

PR. (b) Rain-rate from

Rain-gauge and model

simulations.
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Figure 4: Spatial Distribution of 

Dm and Nw estimated by GPM 

Ku-PR in September 2, 2014. 

The collocated Parsivel 

locations and the corresponding 

error diagnostics are marked. 

UND, CD, FA and MD stands for 

underestimation, correct 

detection, false alarm and 

missed detection.

ID Site
Rain-rate (mm/h) Dm (mm) Nw (dBNw)

Parsivel Ku-PR Parsivel Ku-PR Parsivel Ku-PR

MD-1
P2 -

valley
1.38 - 1.22 - 34.76 -

FA-1
P7 -

valley
- 0.52 - 1.13 - 32.24

FA-2
P19 -

ridge
- 0.66 - 1.18 - 32.43

UND-1
P6 –

valley
10.41 2.51 1.48 1.45 39.54 34.01

CD-1
P5 –

valley
11.24 10.20 1.87 1.41 35.23 40.78

CD-2
P8 -

valley
1.65 1.73 1.31 1.36 34.39 33.59

Table 1- Comparison of GPM Ku-PR estimates with collocated GV. 

Figure 5: Vertical profiles of corrected reflectivity factor, (b) Dm and 

(c) Nw from GPM Ku-PR. 

Shift in Dm-Nw relationship in Parsivel 

observations and model simulations

GPM Ku-PR systematically underestimate Nw and rain-rate in the presence of low-level cloud and fog 

Figure 6: Comparison of DSD profiles from GPM Ku-PR with GV parsivel for the September 2, 2014 case. Dotted lines 

with markers are the best fit normalized gamma distribution function with Dm and Nw from parsivels. 

The shape-parameter (µ) for Normalized Gamma distribution varies with the precipitation type. 
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Figure 7 : (a)Schematic of the model-based correction framework. (b) Fog microphysics parameters from MPS 

observations at Elkmont (P6) when RG detects no rain and MPS detects fog used to represent fog in the model. 

Model-based retrievals for underestimation cases:

Figure 8: GPM Ku-PR estimated reflectivity profiles, Dm and Nw for two underestimation cases observed at the western 

foothills of the SAM. Black line denotes the location of the top boundary condition (2 km AGL).

Method-1: Retrieval-Based

Figure 9: Simulated rain-rate and DSD spectra for Method-1 and Method-2 of the model simulations for the two 

underestimation cases. Low-level fog is forced between 20 and 50 minutes at three different depths.

August 8, 2014 September 2, 2014 Figure 10: Reflectivity factor profiles from Model Simulations 

and GPM Ku-PR.

Findings:

1. Rain-rate from Method-1 without fog simulations 

match GPM Ku-PR estimates while the rain-rate 

from Method-2 without fog simulations are higher 

than the estimates.

2. DSDs between 0.75 and 1.5 mm are 

underestimated by Method-1 simulations. Method-

2 DSDs are close to observations

3. No-fog simulations from Method-2 are 

close to observations compared to 

Method-1 simulations.

4. Corrected Reflectivity Factors for 

Method-2 no-fog simulations also 

show low-level enhancement. 

Figure 11: (a) Comparsion of rain-rate between the rain-gauge 

observations, GPM Ku-PR estimations and model simulations with and 

without low-level fog. (b) Dm-Nw relationship of GPM Ku-PR and Model 

simulations. 

The model is also tested for seven 

underestimation warm precipitation 

cases in different regions of the SAM. 

Figure 14 : Left panel – Ka- radar Reflectivity profiles at Mantaro Valley on February 3, 2016. Right Panel - a) 10-min 

averaged vertical profiles of reflectivity measured by a Ka Band radar Mira 35c when rains JFM 2016 and JF 2017. b) 

Mean diurnal cycle of precipitation measured by a rain-gauge.

 
 
Figure 5.- Drop size distribution from measurements of the optical disdrometer Parsivel2. The x-axis are the hours 

of the day, the y-axis is the diameter of the hydrometeors and in shading the concentration. In the superior left 

corner the drop size distribution for the period 16-22 LT as a plot where every hour is a different line, the x-axis is 

the diameter of the hydrometeors and the y-axis is the concentration. 
 
 

 
 
 
 
 

 
Figure 1.- Digital elevation model of the region of study with a zoom to location of the Mantaro Valley located in 

the Central Andes of Peru. The location of LAMAR in the Mantaro valley is the red dot. 
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Figure 16 : Histogram of rainfall intensity observed along the rain gauge transect maintained by Duke University (DU) 

in the eastern Andes. Stations with incomplete records were removed. The letters A,B,C refer to different pixels of 3B42 

and IMERG spanning the transect.

Figure 13: Drop size distribution from Parsivel2. The x-axis are 

the hours of the day, the y-axis is the diameter of the 

hydrometeors and in shading the concentration. In the superior 

left corner the drop size distribution for the period 16-22 LT as a 

plot where every hour is a different line.

Figure 12: Digital elevation model of the Mantaro

Valley in the Central Andes of Peru where the 

LAMAR Laboratory is located (red dot). 
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Method-2: Measurement- Based


